We study the problem of fair $k$-median where each cluster is required to have a fair representation of individuals from different groups. In the fair representation $k$-median problem, we are given a set of points $X$ in a metric space. Each point $x\in X$ belongs to one of $\ell$ groups. Further, we are given fair representation parameters $\alpha_j$ and $\beta_j$ for each group $j\in [\ell]$. We say that a $k$-clustering $C_1, \cdots, C_k$ fairly represents all groups if the number of points from group $j$ in cluster $C_i$ is between $\alpha_j |C_i|$ and $\beta_j |C_i|$ for every $j\in[\ell]$ and $i\in [k]$. The goal is to find a set $\mathcal{C}$ of $k$ centers and an assignment $\phi: X\rightarrow \mathcal{C}$ such that the clustering defined by $(\mathcal{C}, \phi)$ fairly represents all groups and minimizes the $\ell_1$-objective $\sum_{x\in X} d(x, \phi(x))$. We present an $O(\log k)$-approximation algorithm that runs in time $n^{O(\ell)}$. Note that the known algorithms for the problem either (i) violate the fairness constraints by an additive term or (ii) run in time that is exponential in both $k$ and $\ell$. We also consider an important special case of the problem where $\alpha_j = \beta_j = \frac{f_j}{f}$ and $f_j, f \in \mathbb{N}$ for all $j\in [\ell]$. For this special case, we present an $O(\log k)$-approximation algorithm that runs in $(kf)^{O(\ell)}\log n + poly(n)$ time.
翻译:我们研究公平美元- 中位数问题, 其中每个组都需要有来自不同组的个人公平代表 。 在公平代表 美元- 中位数问题中, 我们得到一组美元- 美元。 美元xxxxx美元属于美元=ell美元组。 此外, 我们得到每个组的公平代表参数$ alpha_ j$ 和 $\ beta_ j$ 。 我们说, 每个组的公平代表参数是 $j\ 美元 [\ 美元] 。 我们的目标是找到一个 美元- 集中 $C_ 1, cdddddddddots 美元( 美元_ 美元_ 美元_ 美元) 。 目前的目标是找到一个固定的 美元- 美元- 美元( 美元xxx美元) 美元和 美元分配 美元: Xrightral\ c_ 美元 运行 美元xxxx 美元=美元 美元=美元=美元 美元=美元。 美元xxxxxxxxxxxxx