Free-form inpainting is the task of adding new content to an image in the regions specified by an arbitrary binary mask. Most existing approaches train for a certain distribution of masks, which limits their generalization capabilities to unseen mask types. Furthermore, training with pixel-wise and perceptual losses often leads to simple textural extensions towards the missing areas instead of semantically meaningful generation. In this work, we propose RePaint: A Denoising Diffusion Probabilistic Model (DDPM) based inpainting approach that is applicable to even extreme masks. We employ a pretrained unconditional DDPM as the generative prior. To condition the generation process, we only alter the reverse diffusion iterations by sampling the unmasked regions using the given image information. Since this technique does not modify or condition the original DDPM network itself, the model produces high-quality and diverse output images for any inpainting form. We validate our method for both faces and general-purpose image inpainting using standard and extreme masks. RePaint outperforms state-of-the-art Autoregressive, and GAN approaches for at least five out of six mask distributions. Github Repository: git.io/RePaint
翻译:在任意的二元面罩指定的区域中,在图像中添加新内容是自由面板的任务。 多数现有方法都为某种面罩的布局培训了新内容, 这限制了面罩的布局能力, 将这些面罩的布局能力限制在看不见的遮罩类型中。 此外, 使用像素和感知性损失的培训往往导致向缺失区域提供简单的质谱扩展, 而不是在语义上有意义的生成。 在这项工作中, 我们提议使用适用于甚至极端面罩的“ DDPM ” 描述性模型( DDPM ) 。 我们使用一种预先训练的无条件 DDPM 作为之前的基因化。 为了给生成过程设置条件, 我们只通过使用给定图像信息对未显示的区域进行取样来改变反向扩散的版本。 由于这种技术不会修改或限定原始 DDPM 网络本身, 该模型为任何插入形式生成高质量和多样的输出图像。 我们用标准和极端的面罩来验证我们的脸和一般用途图像的油漆方法。 重新定位超越了“ 磁盘/ 映射/ 映射/ ” 最起码五PAAN 方法。