Many methods that build powerful variational distributions based on unadjusted Langevin transitions exist. Most of these were developed using a wide range of different approaches and techniques. Unfortunately, the lack of a unified analysis and derivation makes developing new methods and reasoning about existing ones a challenging task. We address this giving a single analysis that unifies and generalizes these existing techniques. The main idea is to augment the target and variational by numerically simulating the underdamped Langevin diffusion process and its time reversal. The benefits of this approach are twofold: it provides a unified formulation for many existing methods, and it simplifies the development of new ones. In fact, using our formulation we propose a new method that combines the strengths of previously existing algorithms; it uses underdamped Langevin transitions and powerful augmentations parameterized by a score network. Our empirical evaluation shows that our proposed method consistently outperforms relevant baselines in a wide range of tasks.
翻译:在未调整的兰埃文过渡基础上建立强大的变异分布的许多方法都存在。这些方法大多是使用各种各样的不同方法和技术开发的。 不幸的是,缺乏统一分析和推导使得制定新方法和对现有方法的推理成为一项具有挑战性的任务。我们处理这一问题时,只进行一项分析,统一和概括这些现有技术。主要想法是通过数字模拟低劣的朗埃文扩散过程及其时间逆转来扩大目标和变异性。这种方法的好处是双重的:它为许多现有方法提供了统一的配方,并简化了新方法的发展。事实上,我们利用我们的配方提出了一种新方法,将现有算法的长处结合起来;它使用了未得到充分推广的朗埃文过渡和强力增强功能,并用一个计分网参数来参数参数。我们的经验评估表明,我们提出的方法始终超越了广泛任务中的相关基线。