This paper proposes a theoretical framework on the mechanism of autoencoders. To the encoder part, under the main use of dimensionality reduction, we investigate its two fundamental properties: bijective maps and data disentangling. The general construction methods of an encoder that satisfies either or both of the above two properties are given. To the decoder part, as a consequence of the encoder constructions, we present a new basic principle of the solution, without using affine transforms. The generalization mechanism of autoencoders is modeled. The results of ReLU autoencoders are generalized to some non-ReLU cases, particularly for the sigmoid-unit autoencoder. Based on the theoretical framework above, we explain some experimental results of variational autoencoders, denoising autoencoders, and linear-unit autoencoders, with emphasis on the interpretation of the lower-dimensional representation of data via encoders; and the mechanism of image restoration through autoencoders is natural to be understood by those explanations. Compared to PCA and decision trees, the advantages of (generalized) autoencoders on dimensionality reduction and classification are demonstrated, respectively. Convolutional neural networks and randomly weighted neural networks are also interpreted by this framework.
翻译:本文提出了关于自动编码器机制的理论框架。 对于编码器部分, 在主要使用维度降低法的情况下, 我们调查其两个基本特性: 双导图和数据脱钩。 给出了符合以上两个属性中任一或两个属性的编码器的一般构造方法。 对于解码器部分, 由于编码器构造的结果, 我们提出了一个新的解决方案基本原则, 不使用离子变形; 将自动编码器的一般化机制建模。 ReLU 自动编码器的结果被推广到一些非ReLU案例中, 特别是对于sigmoid- unitalencoder。 基于上述理论框架, 我们解释了变异自动编码器、 解调自动编码器和线性线性自动编码器的一些实验结果, 重点是通过编码器对数据较低维度的表达方式进行解释; 通过自动编码器的图像恢复机制是自然的, 这些解释是自然的。 与等同级和决定型自动编码器网络相比, 也分别展示了( 普通) 和 级化网络的优势。