We propose a method for optimal Bayesian filtering with deterministic particles. In order to avoid particle degeneration, the filter step is not performed at once. Instead, the particles progressively flow from prior to posterior. This is achieved by splitting the filter step into a series of sub-steps. In each sub-step, optimal resampling is done by a map that replaces non-equally weighted particles with equally weighted ones. Inversions of the maps or monotonicity constraints are not required, greatly simplifying the procedure. The parameters of the mapping network are optimized w.r.t.\ to a particle set distance. This distance is differentiable, and compares non-equally and equally weighted particles. Composition of the map sequence provides a final mapping from prior to posterior particles. Radial basis function neural networks are used as maps. It is important that no intermediate continuous density representation is required. The entire flow works directly with particle representations. This avoids costly density estimation.
翻译:我们建议一种用确定性粒子进行最佳贝叶斯过滤的方法。 为了避免粒子降解, 过滤步骤不会同时进行。 相反, 粒子会从后方开始逐渐流动。 这是通过将过滤步骤分割成一系列子步骤来实现的。 在每一个子步骤中, 最佳的重标由地图进行, 地图以同等加权的粒子取代非平均加权的粒子。 不需要地图的反转或单一性限制, 大大简化程序。 映射网络的参数是优化的 w.r. t.\ 至粒子设定的距离。 这种距离是不同的, 并且比较非平均和同等加权的粒子。 映射序列的构成提供了从前方到后方粒子的最后映射。 辐射基函数神经网络被作为地图使用。 不需要中间连续密度代表非常重要。 整个流与粒子表示直接起作用。 这避免了昂贵的密度估计 。</s>