项目名称: Maxwell方程的局部保结构算法研究
项目编号: No.11201169
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 蔡加祥
作者单位: 淮阴师范学院
项目金额: 22万元
中文摘要: 偏微分方程的保结构算法拥有优异的数值稳定性和较好的长时间数值模拟能力。但目前的保结构算法在研究偏微分方程时由于受到合适边界条件的限制,从而导致很多算法不是局部保结构算法。Maxwell方程有着深刻的物理背景,在研究其数值算法时,自然希望算法尽可能地使得方程的能量,动量以及代数结构等在任意时空局部得以保持,而不仅仅是在整个计算区域上得以保持。本项目试图研究Maxwell方程局部保结构算法构造的一般步骤和相关理论。具体内容包括:发展Maxwell方程的保结构算法到局部保结构算法;给出该方程适用局部保结构算法的条件;局部保结构算法的数值分析;局部保结构算法和现有的保结构算法的优劣比较。
中文关键词: 麦克斯韦方程;局部保结构算法;哈密顿系统;辛积分子;偏微分方程
英文摘要: Structure-preserving (SP) method for partial differential equations (PDEs) displays outstanding numerical stability and good performance in long-time simulations. Whereas, due to the restriction of appropriate boundary conditions, most of these SP method are not local SP method. Because the Maxwell's equations has definite physical background, we naturally expect that the obtained numerical algorithms can preserve the energy, momentum conservation laws and algebra structure in any time-space regions, not just in global computational domain. The fundamental objective of the program is to research the theory of local SP method and construct a series of local SP methods for the Maxwell's equations. The idiographic contents include several aspects as follows: extend the SP method to local SP method; give the conditions for applying local SP method; implement coresponding numerical analysis for the local SP mentod; compare the efficiency between the local SP method and SP method.
英文关键词: Maxwell's equations;Local structure-preserving algorithm;Hamiltonian system;Symplectic integrator;Partial differential equation