We introduce a univariate signal deconvolution method based on the principles of an approach to Artificial General Intelligence in order to build a general-purpose model of models independent of any arbitrarily assumed prior probability distribution. We investigate how non-random data may encode information about the physical properties, such as dimensions and length scales of the space in which a signal or message may have been originally encoded, embedded, or generated. Our multidimensional space reconstruction method is based on information theory and algorithmic probability, so that it is proven to be agnostic vis-a-vis the arbitrarily chosen encoding-decoding scheme, computable or semi-computable method of approximation to algorithmic complexity, and computational model. The results presented in this paper are useful for applications in coding theory, particularly in zero-knowledge one-way communication channels, such as in deciphering messages from unknown generating sources about which no prior knowledge is available and to which no return message can be sent. We argue that this method has the potential to be of great value in cryptography, signal processing, causal deconvolution, life and technosignature detection.
翻译:暂无翻译