In this work, we study the performance of Reed--Solomon codes against adversarial insertion-deletion (insdel) errors. We prove that over fields of size $n^{O(k)}$ there are $[n,k]$ Reed-Solomon codes that can decode from $n-2k+1$ insdel errors and hence attain the half-Singleton bound. We also give a deterministic construction of such codes over much larger fields (of size $n^{k^{O(k)}}$). Nevertheless, for $k=O(\log n /\log\log n)$ our construction runs in polynomial time. For the special case $k=2$, which received a lot of attention in the literature, we construct an $[n,2]$ Reed-Solomon code over a field of size $O(n^4)$ that can decode from $n-3$ insdel errors. Earlier constructions required an exponential field size. Lastly, we prove that any such construction requires a field of size $\Omega(n^3)$.
翻译:在这项工作中,我们研究了Reed-Solomon代码在对抗性插入-删除(insdel)错误方面的性能。然而,我们证明,在面积为$n ⁇ O(k)美元的范围内,Reed-Solomon代码有$[n,k]$(k)$(k)$(k)$(k)$(k)$(美元),能够从$-2k+1美元(insdel)错误中解码,从而达到半Singleton误差。我们还在大得多的域(大小为$n ⁇ @k ⁇ O(k)O(k)O(k)%(k)$(k)$(美元))上,这种代码的构造具有决定性性。然而,对于在多时段内运行的工程,我们需要一个大小为$2美元(n)的特案,我们在一个大小为$(n)O(n)4)的域上建造了一个能从$(n-3美元解码的Reed-Solomon代码。早期的构造需要一个指数大小。最后,我们证明任何这样的构造都需要一个大小为$\Omega(n)的域。