This is a detailed tutorial paper which explains the Principal Component Analysis (PCA), Supervised PCA (SPCA), kernel PCA, and kernel SPCA. We start with projection, PCA with eigen-decomposition, PCA with one and multiple projection directions, properties of the projection matrix, reconstruction error minimization, and we connect to autoencoder. Then, PCA with singular value decomposition, dual PCA, and kernel PCA are covered. SPCA using both scoring and Hilbert-Schmidt independence criterion are explained. Kernel SPCA using both direct and dual approaches are then introduced. We cover all cases of projection and reconstruction of training and out-of-sample data. Finally, some simulations are provided on Frey and AT&T face datasets for verifying the theory in practice.
翻译:这是一份详细的指导性文件,解释了主要成分分析(PCA)、受监督的五氯苯甲醚(SPCA)、五氯苯甲醚(CPCA)、内核和内核的SPCA。我们从投影开始,五氯苯甲醚(Eigen分解),五氯苯甲醚(CPA),具有一个和多个投影方向,投影矩阵的特性,重建误差最小化,并与自动编码连接。然后,覆盖具有单值分解的五氯苯甲醚(CPA)、双倍五氯苯甲醚(CPA)和内核五氯苯甲醚(CPA),解释使用评分和Hilbert-Schmidt独立性标准的SPCA。然后采用直接和双重方法的Kernel SPCA(Kernel SPCA),我们涵盖所有预测和重建培训和外体数据的案例。最后,在Frey和AT&T上提供了一些模拟数据,以核实实际理论。