项目名称: 基于导波检测技术的管道在线健康评估方法研究

项目编号: No.11202137

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 邓菲

作者单位: 宁波工程学院

项目金额: 20万元

中文摘要: 各类长距离充液(气)管道在运行中都存在着不同程度的损伤(截面损失)及泄漏问题,造成了很大的经济和资源浪费。超声导波技术非常适合长距离管道的高效检测,但现有方法存在对小缺陷的检测灵敏度不高,不能在缺陷形态未知的情况下判别缺陷尺寸以完成对管道全面健康评估的问题。本课题的主要研究内容是提出一种基于导波检测技术的管道在线健康评估新方法,并对该方法进行理论分析、数值模拟和实验验证。该方法采用基于时间反转理论的单通道管道导波检测新方法:在传感器单元轴向位置可调的新型传感器阵列基础上,通过时间反转激励信号的错时激励,实现单通道的时间反转导波检测;通过时间反转导波检测时的缺陷反射率随信号截取窗宽变化关系曲线辨识缺陷特征;综合考虑管道几何参数、温湿度、压力等因素对传感器及波的传播特性的影响,利用在线监测的传感器阵列,构建缺陷位置、缺陷特征综合评估模型,以实现管道在线健康评估。

中文关键词: 超声导波;管道检测;宽频;缺陷辨识;

英文摘要: More or less damages or leakages exist in various pipes in service, which result in economic and resources waste. Guided wave technology has been demonstrated to be effective at detecting defects in pipes. However, the inspection is only sensitive to relatively large defects. Futhermore, the technique is unable to fully characterize a flaw without some prior knowledge regarding the state of the flaw. In the current research, a novel pipe-line health evaluation method, based on the time reversal guided wave inspection method using one signal generator tunnel, is proposed. Around this theme, theoretical research, numerically simulation and experiments will be carried out. At first, a new distributed array of transducers will be developed for inciting time reversal signals one by one with different time intervals. Secondly, characterization of defects using the relationship between the amplitudes of the time reversal detection echoes and the signal intercepting windows is an active area of research. In addition, the impact of defect location, pipe condition, temperature, humidity, and pressure on the wave propagation will be considered. Finally, a online monitoring model for pipe will be given based on historical detection signals.

英文关键词: Ultrasonic guided waves;pipe inspection;wide-frequency;defect identification;

成为VIP会员查看完整内容
0

相关内容

《智能制造机器视觉在线检测测试方法》国家标准意见稿
专知会员服务
37+阅读 · 2021年9月28日
专知会员服务
18+阅读 · 2021年6月10日
专知会员服务
26+阅读 · 2021年1月29日
专知会员服务
88+阅读 · 2021年1月17日
专知会员服务
94+阅读 · 2020年12月8日
小目标检测技术研究综述
专知会员服务
114+阅读 · 2020年12月7日
专知会员服务
44+阅读 · 2020年8月20日
基于小样本学习的图像分类技术综述
专知会员服务
146+阅读 · 2020年5月6日
基于机器学习的自动化网络流量分析
CCF计算机安全专委会
4+阅读 · 2022年4月8日
【质量检测】机器视觉表面缺陷检测综述
产业智能官
30+阅读 · 2018年9月24日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
已删除
将门创投
12+阅读 · 2018年6月25日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Simplicial Attention Networks
Arxiv
0+阅读 · 2022年4月20日
小贴士
相关VIP内容
《智能制造机器视觉在线检测测试方法》国家标准意见稿
专知会员服务
37+阅读 · 2021年9月28日
专知会员服务
18+阅读 · 2021年6月10日
专知会员服务
26+阅读 · 2021年1月29日
专知会员服务
88+阅读 · 2021年1月17日
专知会员服务
94+阅读 · 2020年12月8日
小目标检测技术研究综述
专知会员服务
114+阅读 · 2020年12月7日
专知会员服务
44+阅读 · 2020年8月20日
基于小样本学习的图像分类技术综述
专知会员服务
146+阅读 · 2020年5月6日
相关资讯
基于机器学习的自动化网络流量分析
CCF计算机安全专委会
4+阅读 · 2022年4月8日
【质量检测】机器视觉表面缺陷检测综述
产业智能官
30+阅读 · 2018年9月24日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
已删除
将门创投
12+阅读 · 2018年6月25日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员