Tensor Robust Principal Component Analysis (TRPCA), which aims to recover a low-rank tensor corrupted by sparse noise, has attracted much attention in many real applications. This paper develops a new Global Weighted TRPCA method (GWTRPCA), which is the first approach simultaneously considers the significance of intra-frontal slice and inter-frontal slice singular values in the Fourier domain. Exploiting this global information, GWTRPCA penalizes the larger singular values less and assigns smaller weights to them. Hence, our method can recover the low-tubal-rank components more exactly. Moreover, we propose an effective adaptive weight learning strategy by a Modified Cauchy Estimator (MCE) since the weight setting plays a crucial role in the success of GWTRPCA. To implement the GWTRPCA method, we devise an optimization algorithm using an Alternating Direction Method of Multipliers (ADMM) method. Experiments on real-world datasets validate the effectiveness of our proposed method.
翻译:Tensor Robust主元件分析(TRPCA)旨在回收因杂音稀薄而损坏的低位元件,它在许多实际应用中引起了很大的注意。本文开发了一种新的全球加权TRPCA方法(GWTRPCA),这是第一种同时考虑Fourier域内前切片和前端切片独特值重要性的方法。利用这一全球信息,GWTRPCA对较大的单值进行较轻的处罚,并给它们分配较轻的重量。因此,我们的方法可以更准确地回收低盘数的组件。此外,我们建议采用一个有效的适应权重学习战略,因为权重设定在GWTEPCA的成功中发挥着至关重要的作用。为了实施GWTRPCA方法,我们设计了一种优化算法,使用乘数调方向法(ADMM)方法。对真实世界数据集的实验证实了我们拟议方法的有效性。