We propose efficient numerical schemes for implementing the natural gradient descent (NGD) for a broad range of metric spaces with applications to PDE-based optimization problems. Our technique represents the natural gradient direction as a solution to a standard least-squares problem. Hence, instead of calculating, storing, or inverting the information matrix directly, we apply efficient methods from numerical linear algebra. We treat both scenarios where the Jacobian, i.e., the derivative of the state variable with respect to the parameter, is either explicitly known or implicitly given through constraints. We can thus reliably compute several natural NGDs for a large-scale parameter space. In particular, we are able to compute Wasserstein NGD in thousands of dimensions, which was believed to be out of reach. Finally, our numerical results shed light on the qualitative differences between the standard gradient descent and various NGD methods based on different metric spaces in nonconvex optimization problems.
翻译:我们提出了实施自然梯度下降(NGD)的高效数字计划,用于对基于PDE的优化问题的应用。我们的技术代表了自然梯度方向,作为解决标准最小平方问题的解决方案。因此,我们不是直接计算、储存或颠倒信息矩阵,而是从数字线性代数中采用高效方法。我们处理两种情况,即Jacobian(即国家变量的衍生物)在参数方面要么明确为人知,要么通过限制间接给出。因此,我们可以可靠地为大型参数空间计算出若干自然NGD。特别是,我们能够从数千个方面计算出瓦瑟施内NGD,而据认为这些方面是遥不可及的。最后,我们的数字结果揭示了标准梯度下降与基于非康韦克斯优化问题不同指标空间的不同NGD方法之间的质差异。