The Cox model is an indispensable tool for time-to-event analysis, particularly in biomedical research. However, medicine is undergoing a profound transformation, generating data at an unprecedented scale, which opens new frontiers to study and understand diseases. With the wealth of data collected, new challenges for statistical inference arise, as datasets are often high dimensional, exhibit an increasing number of measurements at irregularly spaced time points, and are simply too large to fit in memory. Many current implementations for time-to-event analysis are ill-suited for these problems as inference is computationally demanding and requires access to the full data at once. Here we propose a Bayesian version for the counting process representation of Cox's partial likelihood for efficient inference on large-scale datasets with millions of data points and thousands of time-dependent covariates. Through the combination of stochastic variational inference and a reweighting of the log-likelihood, we obtain an approximation for the posterior distribution that factorizes over subsamples of the data, enabling the analysis in big data settings. Crucially, the method produces viable uncertainty estimates for large-scale and high-dimensional datasets. We show the utility of our method through a simulation study and an application to myocardial infarction in the UK Biobank.


翻译:Cox模型是进行时间到活动分析,特别是生物医学研究方面进行时间到活动分析的不可或缺的工具。然而,医学正在经历一场深刻的转变,以前所未有的规模生成数据,这为研究和理解疾病开辟了新的前沿。由于收集的数据丰富,统计推论的新挑战出现,因为数据集往往是高维的,在非正常时空时间点显示越来越多的测量数据,而且过于庞大,难以记忆。许多当前时间到活动分析的实施不适合这些问题,因为推断要求计算,需要同时获得全部数据。我们在这里提议了一个Bayesian版本,用于计算Cox的计算过程,以部分方式表示Cox对具有数百万个数据点和数千个时间依赖的共变数的大型数据集进行有效推断的可能性。我们通过随机变异的推断和对日志相似性分析的结合,我们获得了一个近似分布的近似值,该分布将数据分解为数据子抽样,使分析能够在大数据环境中进行。我们用高维值分析,我们用高维度的模型来分析。我们用高空的模型来研究,我们用一种可靠的方法,用高空空的模型来研究。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
162+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员