Topological Data Analysis (TDA) gives practioners the ability to analyse the global structure of cybersecurity data. We use TDA for anomaly detection in host-based logs collected with the open-source Logging Made Easy (LME) project. We present an approach that builds a filtration of simplicial complexes directly from Windows logs, enabling analysis of their intrinsic structure using topological tools. We compare the efficacy of persistent homology and the spectrum of graph and hypergraph Laplacians as feature vectors against a standard log embedding that counts events, and find that topological and spectral embeddings of computer logs contain discriminative information for classifying anomalous logs that is complementary to standard embeddings. We end by discussing the potential for our methods to be used as part of an explainable framework for anomaly detection.
翻译:地形数据分析(TDA) 使分析者有能力分析全球网络安全数据结构。 我们使用TDA在与开放源码登录(LME)项目一起收集的基于主机的日志中检测异常现象。 我们提出一种方法,直接从Windows日志中建立简易综合体的过滤系统,以便利用地形工具分析其内在结构。 我们比较了持久性同质的功效以及作为特征矢量的图形和高光谱的图象和高光谱的特性矢量,并比对计算事件的标准记录嵌入,并发现计算机日志的表层和光谱嵌入含有对异常日志进行分类的歧视性信息,以补充标准的嵌入。 我们最后讨论了我们的方法作为可解释的异常探测框架的一部分的可能性。