项目名称: 非结构化管理决策大数据平台构建与关键技术
项目编号: No.91546111
项目类型: 重大研究计划
立项/批准年度: 2016
项目学科: 管理科学
项目作者: 丁治明
作者单位: 北京工业大学
项目金额: 43万元
中文摘要: 本项目拟针对管理决策中大数据的类型多样性、相互关联性、全景呈现性、模型计算性等特点,研究非结构化管理决策大数据平台构建与关键技术。具体包括:(1)非结构化管理决策大数据的统一数据表示、存储、查询操作模型;(2)基于标准化数据抽取与标注的语义空间关联模型;(3)不完整及碎片化大数据的清洗与处理方法;(4)支持管理决策的大数据启发式关联查询及全景呈现查询方法;(5)支持管理决策及语义网络的大数据统计分析、OLAP及数据挖掘方法;(6)大数据驱动的管理决策模型与方法。在此基础上,开发相应的原型系统,并进行典型应用的部署。本项目对突破管理与决策大数据管理的瓶颈问题、促进大数据驱动的管理决策科学化与现代化、服务于重大研究计划的总目标具有重要的实用价值和学术价值。
中文关键词: 大数据;平台构建;管理决策;非结构化数据;语义标注网络
英文摘要: This project deals with the special features in management and decision-making big data management, including the variety of data types, the interconnection of data objects, the panoramic view in query processing, and the model-computaion in data processing, and focuses on the platform construction and key technology for unstructured management and decision-making big data management. The detailed research topics include: (1) Uniformed models for unstructured management and decision-making big data representing, storing, and querying; (2) Semantic network interconnection model based on standardized tag extraction and labeling; (3) Data cleaning and fragmented-data processing methods for big data; (4) Heuristic query processing and panoramic data presenting techniques based on data interconnections of management and decision-making big data; (5) Statistical analysis, OLAP, and data mining methods for management and decision-maiking big data; (6) Big-data-driven management and decision-making models. Based on the theoretical study, the project will develop the related prototype system and deploy real-world applications. The project is very valuable for breaking through the bottle-neck problems in managmeng and decision-making big data management, for improving the big-data-driven management and decision-making, and for serving and achieving the general goal of the NSFC’s key research plan -Research on Big-Data-Driven Management and Decision-Making.
英文关键词: Big Data;Platform Construction;Management and Decision Making;Unstructured Data;Semantic-Tag Network