In the Max-Cut problem in the streaming model, an algorithm is given the edges of an unknown graph $G = (V,E)$ in some fixed order, and its goal is to approximate the size of the largest cut in $G$. Improving upon an earlier result of Kapralov, Khanna and Sudan, it was shown by Kapralov and Krachun that for all $\varepsilon>0$, no $o(n)$ memory streaming algorithm can achieve a $(1/2+\varepsilon)$-approximation for Max-Cut. Their result holds for single-pass streams, i.e.~the setting in which the algorithm only views the stream once, and it was open whether multi-pass access may help. The state-of-the-art result along these lines, due to Assadi and N, rules out arbitrarily good approximation algorithms with constantly many passes and $n^{1-\delta}$ space for any $\delta>0$. We improve upon this state-of-the-art result, showing that any non-trivial approximation algorithm for Max-Cut requires either polynomially many passes or polynomially large space. More specifically, we show that for all $\varepsilon>0$, a $k$-pass streaming $(1/2+\varepsilon)$-approximation algorithm for Max-Cut requires $\Omega_{\varepsilon}\left(n^{1/3}/k\right)$ space. This result leads to a similar lower bound for the Maximum Directed Cut problem, showing the near optimality of the algorithm of [Saxena, Singer, Sudan, Velusamy, SODA 2025]. Our lower bounds proceed by showing a communication complexity lower bound for the Distributional Implicit Hidden Partition (DIHP) Problem, introduced by Kapralov and Krachun. While a naive application of the discrepancy method fails, we identify a property of protocols called ``globalness'', and show that (1) any protocol for DIHP can be turned into a global protocol, (2) the discrepancy of a global protocol must be small. The second step is the more technically involved step in the argument, and therein we use global hypercontractive inequalities.
翻译:暂无翻译