Quantum properties, such as entanglement and coherence, are indispensable resources in various quantum information processing tasks. However, there still lacks an efficient and scalable way to detecting these useful features, especially for high-dimensional and multipartite quantum systems. In this work, we exploit the convexity of samples without the desired quantum features and design an unsupervised machine learning method to detect the presence of such features as anomalies. Particularly, in the context of entanglement detection, we propose a complex-valued neural network composed of pseudo-siamese network and generative adversarial net, and then train it with only separable states to construct non-linear witnesses for entanglement. It is shown via numerical examples, ranging from two-qubit to ten-qubit systems, that our network is able to achieve high detection accuracy which is above 97.5% on average.Moreover, it is capable of revealing rich structures of entanglement, such as partial entanglement among subsystems. Our results are readily applicable to the detection of other quantum resources such as Bell nonlocality and steerability, and thus our work could provide a powerful tool to extract quantum features hidden in multipartite quantum data.


翻译:量子特性,例如缠绕和一致性,是各种量子信息处理任务中不可或缺的资源。然而,仍然缺乏一种有效和可扩展的方法来探测这些有用的特征,特别是高维和多部分量子系统。在这项工作中,我们利用没有理想量子特性的样品的混凝性,设计一种不受监督的机器学习方法来探测异常特征的存在。特别是,在纠缠检测方面,我们提议建立一个由伪西亚网络和基因对抗网组成的复杂价值的神经网络,然后对它进行只有可分离的状态的培训,以建立非线性证人,进行缠绕。我们通过数字实例,从2公分到10公分的系统,展示出我们的网络能够达到高于平均97.5%的高精确度。此外,我们网络能够揭示丰富的纠结结构,如子系间部分缠绕。我们的结果很容易用于探测其他量子资源,例如贝尔非地段和可控性等,从而能够提供一种强大的量子数据,从而提供一种强大的量度工具。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
11+阅读 · 2021年2月17日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
3+阅读 · 2018年11月19日
Arxiv
4+阅读 · 2018年4月30日
Arxiv
9+阅读 · 2018年3月28日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
11+阅读 · 2021年2月17日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
3+阅读 · 2018年11月19日
Arxiv
4+阅读 · 2018年4月30日
Arxiv
9+阅读 · 2018年3月28日
Arxiv
7+阅读 · 2018年3月19日
Top
微信扫码咨询专知VIP会员