Understanding the spatio-temporal patterns of the coronavirus disease 2019 (COVID-19) is essential to construct public health interventions. Spatially referenced data can provide richer opportunities to understand the mechanism of the disease spread compared to the more often encountered aggregated count data. We propose a spatio-temporal Dirichlet process mixture model to analyze confirmed cases of COVID-19 in an urban environment. Our method can detect unobserved cluster centers of the epidemics, and estimate the space-time range of the clusters that are useful to construct a warning system. Furthermore, our model can measure the impact of different types of landmarks in the city, which provides an intuitive explanation of disease spreading sources from different time points. To efficiently capture the temporal dynamics of the disease patterns, we employ a sequential approach that uses the posterior distribution of the parameters for the previous time step as the prior information for the current time step. This approach enables us to incorporate time dependence into our model in a computationally efficient manner without complicating the model structure. We also develop a model assessment by comparing the data with theoretical densities, and outline the goodness-of-fit of our fitted model.
翻译:理解2019年冠状病毒疾病(COVID-19)的时空模式对于建立公共卫生干预措施至关重要。空间参考数据可以提供更丰富的机会来理解疾病传播机制,而与更经常遇到的合并计数数据相比,可以提供更丰富的机会来理解疾病传播机制。我们提出一个spatio-temoor Dirichlet进程混合模型,以分析城市环境中已证实的COVID-19病例。我们的方法可以检测该流行病未观测到的群集中心,并估计对建立预警系统有用的群集的时间范围。此外,我们的模型可以测量城市中不同类型地标的影响,为不同时间点的疾病传播源提供直观解释。为了有效地捕捉疾病模式的时空动态,我们采用顺序方法,将先前时间步骤参数的外表分布作为当前时间步骤的先前信息。这一方法使我们能够以计算有效的方式将时间依赖性纳入我们的模型,而不会使模型结构复杂化。我们还开发了模型评估模型,将数据与理论密度进行比较,并概述我们模型的完善性。