Mass transport phenomenon in concrete structures is strongly coupled with their mechanical behavior. The first coupling fabric is the Biot's theory according to which fluid pressure interacts with solid stress state and volumetric deformation rate of the solid induces changes in fluid pressure. Another coupling mechanism emerges with cracks which serve as channels for the fluid to flow through them and provide volume for fluid storage. Especially the second coupling mechanism presents a challenge for numerical modeling as it requires detailed knowledge about cracking process. Discrete mesoscale mechanical models coupled with mass transport offer simple and robust way to solve the problem. On the other hand, however, they are computationally demanding. In order to reduce this computational burden, the present paper applies the asymptotic expansion homogenization technique to the coupled problem to deliver (i) continuous and homogeneous description of the macroscopic problem which can be easily solved by the finite element method, (ii) discrete and heterogeneous mesoscale problem in the periodic setup attached to each integration point of the macroscale along with (iii) equations providing communication between these two scales. The transient terms appear at the macroscale only, as well as the Biot's coupling terms. The coupling through cracking is treated at the mesoscale by changing conductivity of the conduit elements according to the mechanical solution, otherwise the two mesoscale steady state problems are decoupled and can be therefore solved in a sequence. This paper presents verification studies showing performance of the homogenized solution.
翻译:混凝土结构中的大规模运输现象与机械行为紧密结合。 第一种混合结构是Biot的理论,根据这个理论,流体压力与固体压力的固态状态和体积变形速度相互作用,固态压力和体积变形速度导致液体压力的变化。另一个混合机制出现裂缝,作为流体流的渠道,为液体储存提供大量体积。特别是第二个混合机制对数字模型提出了挑战,因为它要求对裂变过程有详细的了解。分解的中尺度机械模型加上大众运输提供了简单而有力的解决问题的方法。但另一方面,这些模型在计算上要求很高。为了减少这一计算负担,本文件将无平衡的扩张同质化技术应用于同时存在的问题,以便(一) 流体积流流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体积。 (二) 分解和混集体流体流体流体流体型的周期设置问题,与(三) 等式的公式提供了解决这两个尺度之间的沟通。 跨度术语术语在这两个尺度上的跨级化分析中,因此,在宏观分析中呈现中呈现的解型变形变体型体化过程中, 解的解过程的状态的状态的状态的状态的状态的状态的状态的状态的演化问题只能为,通过结构流体化的状态的状态的演化, 的状态的状态的状态的状态的状态的演演化,只能为递化过程的演化, 。