In $d$ dimensions, accurately approximating an arbitrary function oscillating with frequency $\lesssim k$ requires $\sim k^d$ degrees of freedom. A numerical method for solving the Helmholtz equation (with wavenumber $k$ and in $d$ dimensions) suffers from the pollution effect if, as $k\to\infty$, the total number of degrees of freedom needed to maintain accuracy grows faster than this natural threshold (i.e., faster than $k^d$ for domain-based formulations, such as finite element methods, and $k^{d-1}$ for boundary-based formulations, such as boundary element methods). It is well known that the $h$-version of the finite element method (FEM) (where accuracy is increased by decreasing the meshwidth $h$ and keeping the polynomial degree $p$ fixed) suffers from the pollution effect, and research over the last $\sim$ 30 years has resulted in a near-complete rigorous understanding of how quickly the number of degrees of freedom must grow with $k$ to maintain accuracy. In contrast to the $h$-FEM, at least empirically, the $h$-version of the boundary element method (BEM) does $\textit{not}$ suffer from the pollution effect (recall that in the boundary element method the scattering problem is reformulated as an integral equation on the boundary of the scatterer, with this integral equation then solved numerically using a finite-element-type approximation space). However, the current best results in the literature on how quickly the number of degrees of freedom for the $h$-BEM must grow with $k$ to maintain accuracy fall short of proving this. In this paper, we prove that the $h$-version of the Galerkin method applied to the standard second-kind boundary integral equations for solving the Helmholtz exterior Dirichlet problem does not suffer from the pollution effect when the obstacle is nontrapping (i.e., does not trap geometric-optic rays).


翻译:以美元计值, 精确地接近一种任意功能, 以频度振荡 $( 利索姆 美元), 需要 $( 利萨西姆 美元 ) 自由度 。 解决 Helmholtz 方程式( 以波数 美元 和 美元 美元 ) 的数值方法有污染效应, 如果以美元计, 维持精确度所需的自由总度比这个自然阈值增长更快( 即, 以基于域的精度配方, 如 限元素方法, 以美元计的直径 美元 ; 以基于边界的方程配方程式, 需要 $( 利萨德1美元 ) 。 众所周知, 以美元计值的直径直径计算法( 以美元计的直径直径直值计算), 以直径直的直径直值表示自由度的速率度速度, 以美元计的直径直径直值计算, 以正平面的平方位法 。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月13日
Arxiv
0+阅读 · 2022年10月13日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员