In this paper, we start with a variation of the star cover problem called the Two-Squirrel problem. Given a set $P$ of $2n$ points in the plane, and two sites $c_1$ and $c_2$, compute two $n$-stars $S_1$ and $S_2$ centered at $c_1$ and $c_2$ respectively such that the maximum weight of $S_1$ and $S_2$ is minimized. This problem is strongly NP-hard by a reduction from Equal-size Set-Partition with Rationals. Then we consider two variations of the Two-Squirrel problem, namely the Two-MST and Two-TSP problem, which are both NP-hard. The NP-hardness for the latter is obvious while the former needs a non-trivial reduction from Equal-size Set-Partition with Rationals. In terms of approximation algorithms, for Two-MST and Two-TSP we give factor 3.6402 and $4+\varepsilon$ approximations respectively. Finally, we also show some interesting polynomial-time solvable cases for Two-MST.
翻译:在本文中, 我们首先使用恒星覆盖问题的变式, 称为“ 双螺旋问题 ” 。 鉴于平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方就,两