In the machine learning domain, research on anomaly detection and localization within image data has garnered significant attention, particularly in practical applications such as industrial defect detection. While existing approaches predominantly rely on Convolutional Neural Networks (CNN) as their backbone network, we propose an innovative method based on the Transformer backbone network. Our approach employs a two-stage incremental learning strategy. In the first stage, we train a Masked Autoencoder (MAE) model exclusively on normal images. Subsequently, in the second stage, we implement pixel-level data augmentation techniques to generate corrupted normal images and their corresponding pixel labels. This process enables the model to learn how to repair corrupted regions and classify the state of each pixel. Ultimately, the model produces a pixel reconstruction error matrix and a pixel anomaly probability matrix, which are combined to create an anomaly scoring matrix that effectively identifies abnormal regions. When compared to several state-of-the-art CNN-based techniques, our method demonstrates superior performance on the MVTec AD dataset, achieving an impressive 97.6% AUC.
翻译:在机器学习领域,针对图像数据中的异常检测和定位的研究引起了广泛关注,特别是在工业缺陷检测等实际应用中。虽然现有方法主要依赖于卷积神经网络(CNN)作为骨干网络,但我们提出了一种基于Transformer骨干网络的创新方法。我们的方法采用了两阶段增量学习策略。在第一阶段中,我们对正常图像单独训练一个遮蔽自编码器(MAE)模型。随后,在第二阶段中,我们采用像素级数据增强技术来生成损坏的正常图像及其相应的像素标签。这个过程使模型学会了如何修复受损区域并分类每个像素的状态。最终,模型产生像素重建误差矩阵和像素异常概率矩阵,这两个矩阵结合起来创建一个异常得分矩阵,有效地识别异常区域。与几种最先进的基于CNN的技术相比,我们的方法在MVTec AD数据集上表现出了更好的性能,达到了令人印象深刻的97.6%的AUC。