Mainstream unsupervised anomaly detection algorithms often excel in academic datasets, yet their real-world performance is restricted due to the controlled experimental conditions involving clean training data. Addressing the challenge of training with noise, a prevalent issue in practical anomaly detection, is frequently overlooked. In a pioneering endeavor, this study delves into the realm of label-level noise within sensory time-series anomaly detection (TSAD). This paper presents a novel and practical end-to-end unsupervised TSAD when the training data are contaminated with anomalies. The introduced approach, called TSAD-C, is devoid of access to abnormality labels during the training phase. TSAD-C encompasses three modules: a Decontaminator to rectify the abnormalities (aka noise) present in the training data, a Long-range Variable Dependency Modeling module to capture both long-term intra- and inter-variable dependencies within the decontaminated data that can be considered as a surrogate of the pure normal data, and an Anomaly Scoring module to detect anomalies from all types. Our extensive experiments conducted on three reliable datasets conclusively demonstrate that our approach surpasses existing methodologies, thus establishing a new state-of-the-art performance in the field.
翻译:暂无翻译