We present a neural architecture search algorithm to construct compact reinforcement learning (RL) policies, by combining ENAS and ES in a highly scalable and intuitive way. By defining the combinatorial search space of NAS to be the set of different edge-partitionings (colorings) into same-weight classes, we represent compact architectures via efficient learned edge-partitionings. For several RL tasks, we manage to learn colorings translating to effective policies parameterized by as few as $17$ weight parameters, providing >90% compression over vanilla policies and 6x compression over state-of-the-art compact policies based on Toeplitz matrices, while still maintaining good reward. We believe that our work is one of the first attempts to propose a rigorous approach to training structured neural network architectures for RL problems that are of interest especially in mobile robotics with limited storage and computational resources.


翻译:我们提出了一个神经结构搜索算法来构建紧凑强化学习(RL)政策,将ENAS和ES结合成高度可伸缩和直观的方法。通过将NAS的组合搜索空间定义为不同边缘分布(彩色)的一组相同重量级,我们通过高效的学习边缘分割来代表紧凑结构。对于一些RL任务,我们设法学会了将彩色转化为有效的政策参数,其重量参数只有17美元,根据托普利茨矩阵,为香草政策提供大于90%的压缩,对最新紧凑政策进行6x压缩,同时仍然保持良好的奖励。 我们认为,我们的工作是首次尝试提出严格的方法来培训结构型神经网络结构结构,解决RL问题,特别是储存和计算资源有限的流动机器人的问题。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
3+阅读 · 2018年11月19日
Arxiv
3+阅读 · 2018年10月5日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
8+阅读 · 2018年7月12日
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关资讯
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
6+阅读 · 2020年10月8日
Arxiv
3+阅读 · 2018年11月19日
Arxiv
3+阅读 · 2018年10月5日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
8+阅读 · 2018年7月12日
Arxiv
3+阅读 · 2018年6月24日
Top
微信扫码咨询专知VIP会员