In this work, we study the problem of named entity recognition (NER) in a low resource scenario, focusing on few-shot and zero-shot settings. Built upon large-scale pre-trained language models, we propose a novel NER framework, namely SpanNER, which learns from natural language supervision and enables the identification of never-seen entity classes without using in-domain labeled data. We perform extensive experiments on 5 benchmark datasets and evaluate the proposed method in the few-shot learning, domain transfer and zero-shot learning settings. The experimental results show that the proposed method can bring 10%, 23% and 26% improvements in average over the best baselines in few-shot learning, domain transfer and zero-shot learning settings respectively.
翻译:在这项工作中,我们研究了低资源情景下命名实体识别(NER)的问题,重点是几发和零发的设置。我们以大规模预先培训的语言模式为基础,提出了一个新的NER框架,即SpanNER,它从自然语言监督中学习,并能够不使用内部标签数据而识别从未见过的实体类别。我们就5个基准数据集进行了广泛的实验,并在短发学习、域域转移和零发学习环境中评价了拟议方法。实验结果表明,拟议的方法可以分别比少发学习、域转移和零发学习环境中的最佳基线平均带来10%、23%和26%的改进。