This paper develops methods for proving Lyapunov stability of dynamical systems subject to disturbances with an unknown distribution. We assume only a finite set of disturbance samples is available and that the true online disturbance realization may be drawn from a different distribution than the given samples. We formulate an optimization problem to search for a sum-of-squares (SOS) Lyapunov function and introduce a distributionally robust version of the Lyapunov function derivative constraint. We show that this constraint may be reformulated as several SOS constraints, ensuring that the search for a Lyapunov function remains in the class of SOS polynomial optimization problems. For general systems, we provide a distributionally robust chance-constrained formulation for neural network Lyapunov function search. Simulations demonstrate the validity and efficiency of either formulation on non-linear uncertain dynamical systems.
翻译:本文开发了证明受干扰且分布不明的动态系统的Lyapunov稳定性的方法。 我们假设只有有限的一组扰动样本, 真正的在线扰动实现可能来自与给定样本不同的分布。 我们提出一个优化问题, 以寻找所有平方( SOS) Lyapunov 功能, 并引入一个分布稳健的Lyapunov 函数衍生限制版本 。 我们表明, 这一制约可以重新表述为若干SOS限制, 以确保对 Lyapunov 功能的搜索仍属于SOS 多功能优化问题的类别。 对于一般系统, 我们为 Neural 网络 Lyapunov 功能搜索提供一种分布稳健的随机调节配方。 模拟显示了非线性不确定动态系统两种配方的有效性和效率 。