Existential rule languages are a family of ontology languages that have been widely used in ontology-mediated query answering (OMQA). However, for most of them, the expressive power of representing domain knowledge for OMQA, known as the program expressive power, is not well-understood yet. In this paper, we establish a number of novel characterizations for the program expressive power of several important existential rule languages, including tuple-generating dependencies (TGDs), linear TGDs, as well as disjunctive TGDs. The characterizations employ natural model-theoretic properties, and automata-theoretic properties sometimes, which thus provide powerful tools for identifying the definability of domain knowledge for OMQA in these languages.


翻译:存在规则语言是本体学语言的大家庭,在以本体学为媒介的问答中广泛使用,然而,对大多数本体学语言来说,为OMQA(称为方案表达力)代表域知识的表达力尚不十分清楚,在本文件中,我们为几种重要的生存规则语言,包括产生图腾的依赖物(TGDs)、线性TGDs以及脱钩的TGDs等方案表达力建立了若干新特征,这些特征利用自然模型理论特性,有时还利用自制数据理论特性,从而提供了确定OMQA在这些语文中域知识可定义性的有力工具。

0
下载
关闭预览

相关内容

【知识图谱@ACL2020】Knowledge Graphs in Natural Language Processing
专知会员服务
65+阅读 · 2020年7月12日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
已删除
将门创投
5+阅读 · 2020年3月2日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
3+阅读 · 2021年11月1日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关VIP内容
【知识图谱@ACL2020】Knowledge Graphs in Natural Language Processing
专知会员服务
65+阅读 · 2020年7月12日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
相关资讯
已删除
将门创投
5+阅读 · 2020年3月2日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员