This paper presents DeepKoCo, a novel model-based agent that learns a latent Koopman representation from images. This representation allows DeepKoCo to plan efficiently using linear control methods, such as linear model predictive control. Compared to traditional agents, DeepKoCo is invariant to task-irrelevant dynamics, thanks to the use of a tailored lossy autoencoder network that allows DeepKoCo to learn latent dynamics that reconstruct and predict only observed costs, rather than all observed dynamics. As our results show, DeepKoCo achieves a similar final performance as traditional model-free methods on complex control tasks, while being considerably more robust to distractor dynamics, making the proposed agent more amenable for real-life applications.
翻译:本文展示了DeepKooCo, 这是一种新型的基于模型的代理物, 它从图像中学习了潜伏的Koopman代表物。 这个代理物使得DeepKooCo能够高效地计划使用线性控制方法, 如线性模型预测控制。 与传统代理物相比, DeepKoco不易使用与任务相关的动态, 其原因是使用一个定制的丢失自动编码器网络, 让DeepKooCo能够学习只重建和预测观察到的成本而不是所有观察到的动态的潜在动态。 正如我们的结果表明, DeepKooCo在复杂控制任务上取得了类似于传统的无模式方法的最终性能, 同时对分散动力力作用的强大度要大得多, 使得拟议的代理物更容易被实际应用。