We introduce the notion of symmetric covariation, which is a new measure of dependence between two components of a symmetric $\alpha$-stable random vector, where the stability parameter $\alpha$ measures the heavy-tailedness of its distribution. Unlike covariation that exists only when $\alpha\in(1,2]$, symmetric covariation is well defined for all $\alpha\in(0,2]$. We show that symmetric covariation can be defined using the proposed generalized fractional derivative, which has broader usages than those involved in this work. Several properties of symmetric covariation have been derived. These are either similar to or more general than those of the covariance functions in the Gaussian case. The main contribution of this framework is the representation of the characteristic function of bivariate symmetric $\alpha$-stable distribution via convergent series based on a sequence of symmetric covariations. This series representation extends the one of bivariate Gaussian.
翻译:我们引入了对称共变法概念, 这是对称 $\ alpha$- sable 随机矢量两个组成部分之间依赖性的新度量, 其中稳定性参数 $\ alpha$ 测量其分布的重尾量。 与只有在$\ alpha\ in(1, 2, $) 的情况下才会存在的共变法不同, 对称共变法对于所有$alpha\ in( 0. 2, 0. 美元)都有明确定义。 我们显示, 对称共变法可以用拟议的通用分数衍生物来定义, 其用途比这项工作所涉的更广泛。 已经得出了几种对称共变法特性。 这些特性与高斯案的共变函数相似或更为笼统。 这个框架的主要贡献是根据对称变法变法序列的双数正数 $\ alpha- sable 分布的特性函数的表示。 这个序列的表示扩展了二变数制数数数。