We consider the $0$-Extension problem, where we are given an undirected graph $\mathcal{G}=(V,E)$ equipped with non-negative edge weights $w:E\rightarrow \mathbb{R}^+$, a collection $ T=\{ t_1,\ldots,t_k\}\subseteq V$ of $k$ special vertices called terminals, and a semi-metric $D$ over $T$. The goal is to assign every non-terminal vertex to a terminal while minimizing the sum over all edges of the weight of the edge multiplied by the distance in $D$ between the terminals to which the endpoints of the edge are assigned. $0$-Extension admits two known algorithms, achieving approximations of $O(\log{k})$ [C{\u{a}}linescu-Karloff-Rabani SICOMP '05] and $O(\log{k}/\log{\log{k}})$ [Fakcharoenphol-Harrelson-Rao-Talwar SODA '03]. Both known algorithms are based on rounding a natural linear programming relaxation called the metric relaxation, in which $D$ is extended from $T$ to the entire of $V$. The current best known integrality gap for the metric relaxation is $\Omega (\sqrt{\log{k}})$. In this work we present an improved integrality gap of $\Omega(\log^{\frac{2}{3}}k)$ for the metric relaxation. Our construction is based on the randomized extension of one graph by another, a notion that captures lifts of graphs as a special case and might be of independent interest. Inspired by algebraic topology, our analysis of the gap instance is based on proving no continuous section (in the topological sense) exists in the randomized extension.
翻译:我们考虑的是 $0 美元的特殊垂直值 V $ k$ 特殊终端, 和 半公吨 $T$。 目标是向终端分配每个非定期的直径 $\ mathcal{G{( V, E) 美元, 配有非负边边重量的值 $w: E\rightrow\ mathb{R $ 美元, 收藏$ T ⁇ t_ 1,\ ldotos, t_ k ⁇ subseeteq V$ 美元。 目标是将每个非定期的直径向终端分配一个扩展值, 同时将边缘所有边缘的重量的总量最小化, 乘以美元 。 美元- 美元 美元 。 美元- 美元- 美元- 美元 特别的双向双向双向双向双向端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端半端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间间