We develop a novel approximate simulation algorithm for the joint law of the position, the running supremum and the time of the supremum of a general L\'evy process at an arbitrary finite time. We identify the law of the error in simple terms. We prove that the error decays geometrically in $L^p$ (for any $p\geq 1$) as a function of the computational cost, in contrast with the polynomial decay for the approximations available in the literature. We establish a central limit theorem and construct non-asymptotic and asymptotic confidence intervals for the corresponding Monte Carlo estimator. We prove that the multilevel Monte Carlo estimator has optimal computational complexity (i.e. of order $\epsilon^{-2}$ if the mean squared error is at most $\epsilon^2$) for locally Lipschitz and barrier-type functionals of the triplet and develop an unbiased version of the estimator. We illustrate the performance of the algorithm with numerical examples.
翻译:我们为位置的共同法则、运行的Supremum以及通用 L\'evy 进程在任意的限定时间内的超模时间开发了一个新的近似模拟算法。 我们用简单的术语来识别错误的法则。 我们证明,错误在计算成本的函数上以$Lp$(任何$p\geq 1美元)以几何方式衰减,这与文献中近似值的多元性衰减形成对照。 我们为相应的 Monte Carlo 估测器设定了一个核心限值,并构建了非安全性和无干扰性的信任间隔。 我们用数字示例来说明计算法的运作情况。