We develop a novel approximate simulation algorithm for the joint law of the position, the running supremum and the time of the supremum of a general L\'evy process at an arbitrary finite time. We identify the law of the error in simple terms. We prove that the error decays geometrically in $L^p$ (for any $p\geq 1$) as a function of the computational cost, in contrast with the polynomial decay for the approximations available in the literature. We establish a central limit theorem and construct non-asymptotic and asymptotic confidence intervals for the corresponding Monte Carlo estimator. We prove that the multilevel Monte Carlo estimator has optimal computational complexity (i.e. of order $\epsilon^{-2}$ if the mean squared error is at most $\epsilon^2$) for locally Lipschitz and barrier-type functionals of the triplet and develop an unbiased version of the estimator. We illustrate the performance of the algorithm with numerical examples.


翻译:我们为位置的共同法则、运行的Supremum以及通用 L\'evy 进程在任意的限定时间内的超模时间开发了一个新的近似模拟算法。 我们用简单的术语来识别错误的法则。 我们证明,错误在计算成本的函数上以$Lp$(任何$p\geq 1美元)以几何方式衰减,这与文献中近似值的多元性衰减形成对照。 我们为相应的 Monte Carlo 估测器设定了一个核心限值,并构建了非安全性和无干扰性的信任间隔。 我们用数字示例来说明计算法的运作情况。

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
40+阅读 · 2020年7月23日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年8月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员