In 5G Ultra-Dense Networks, a distributed wireless backhaul is an attractive solution for forwarding traffic to the core. The macro-cell coverage area is divided into many small cells. A few of these cells are designated as gateways and are linked to the core by high-capacity fiber optic links. Each small cell is associated with one gateway and all small cells forward their traffic to their respective gateway through multi-hop mesh networks. We investigate the gateway location problem and show that finding near-optimal gateway locations improves the backhaul network capacity. An exact p-median integer linear program is formulated for comparison with our novel K-GA heuristic that combines a Genetic Algorithm (GA) with K-means clustering to find near-optimal gateway locations. We compare the performance of KGA with six other approaches in terms of average number of hops and backhaul network capacity at different node densities through extensive Monte Carlo simulations. All approaches are tested in various user distribution scenarios, including uniform distribution, bivariate Gaussian distribution, and cluster distribution. In all cases K-GA provides near-optimal results, achieving average number of hops and backhaul network capacity within 2% of optimal while saving an average of 95% of the execution time.
翻译:在 5G Ultra-Dense 网络中,分布式无线回路是向核心传输通信的有吸引力的解决方案。 大型细胞覆盖区被分为许多小细胞。 其中一些细胞被指定为网关, 并通过高容量光纤链接与核心连接。 每个小细胞都与一个网关相关, 所有小细胞都通过多点网友网状网络将其通信传送到各自的网关。 我们调查网关位置问题, 并显示找到接近最佳网关地点可以提高回门网路的能力。 正在设计一个精确的中位整线性程序, 与我们的新颖K- GA heuristic 方案进行比较, 这个方案将基因阿尔哥里姆(GA)与K- 比例聚在一起, 以寻找接近最佳的网关地点。 我们通过广泛的蒙特卡洛 模拟, 将KGA和其他六种方法的性能进行对比, 在不同的节点中, 不同节点中, 测试各种用户分布方案, 包括统一分布、 双位高的线性分布和集群分布。 在全部情况下, K- GA 平均执行 95 平流网络 平均, 在 平流网络中, 实现 平均 平流 平流 的 率 和平均 的 率 率 实现 率 。