We study the effects of rounding on the moments of random variables. Specifically, given a random variable $X$ and its rounded counterpart $\operatorname{rd}(X)$, we study $|\mathbb{E}[X^k] - \mathbb{E}[\operatorname{rd}(X)^{k}]|$ for non-negative integer $k$. We consider the case that the rounding function $\operatorname{rd} : \mathbb{R}\to\mathbb{F}$ corresponds either to (i) rounding to the nearest point in some discrete set $\mathbb{F}$ or (ii) rounding randomly to either the nearest larger or smaller point in this same set with probabilities proportional to the distances to these points. In both cases, we show, under reasonable assumptions on the density function of $X$, how to compute a constant $C$ such that $|\mathbb{E}[X^k] - \mathbb{E}[\operatorname{rd}(X)^{k}]| < C\epsilon^2$, provided $|\operatorname{rd}(x) - x| \leq \epsilon \: E(x)$, where $E : \mathbb{R} \to \mathbb{R}_{\geq 0}$ is some fixed positive piecewise linear function. Refined bounds for the absolute moments $\mathbb{E}[ |X^k-\operatorname{rd}(X)^{k}|]$ are also given.
翻译:具体来说,考虑到一个随机变量 $X$ 及其四舍五入对应方$\Operatorname{rd}(X)$,我们研究的是 $#mathb{E}[X}} -\mathbb{E}[\operatorname{rd}(X){k}} $(非负整数$k$的四舍五入效应。具体来说,我们考虑的情况是,四舍五入函数 $(Operatorname}{r}R_X}(Mathb}F}$(一) 旋转到某个离散点的最近的终点 $\\\\ mathb{(X)}F}或(二) 随机切换到该组中最近的大点,其概率与这些点的距离成比例。在两种情况下,我们发现,根据对美元密度函数的合理假设, 如何计算一个固定的 $[{x}(X}线性}_(X)__(x) 美元)。