We study a stochastic program where the probability distribution of the uncertain problem parameters is unknown and only indirectly observed via finitely many correlated samples generated by an unknown Markov chain with $d$ states. We propose a data-driven distributionally robust optimization model to estimate the problem's objective function and optimal solution. By leveraging results from large deviations theory, we derive statistical guarantees on the quality of these estimators. The underlying worst-case expectation problem is nonconvex and involves $\mathcal O(d^2)$ decision variables. Thus, it cannot be solved efficiently for large $d$. By exploiting the structure of this problem, we devise a customized Frank-Wolfe algorithm with convex direction-finding subproblems of size $\mathcal O(d)$. We prove that this algorithm finds a stationary point efficiently under mild conditions. The efficiency of the method is predicated on a dimensionality reduction enabled by a dual reformulation. Numerical experiments indicate that our approach has better computational and statistical properties than the state-of-the-art methods.
翻译:我们研究了一个随机程序, 不确定问题参数的概率分布未知, 并且只能通过一个以美元为单位的未知的Markov 链条生成的有限相关样本间接观测到。 我们提出了一个数据驱动分布强的优化模型, 以估计问题的客观功能和最佳解决方案。 我们通过利用大偏差理论的结果, 对这些估计值的质量进行统计保证。 最坏的预期问题在于非电解, 涉及$\mathcal O( d ⁇ 2) $决定变量。 因此, 无法以大美元有效解决这个问题 。 通过利用这一问题的结构, 我们设计了一个定制的 Frank- Wolfe 算法, 配有 $\ mathcal O( d) $ 的 convex 方向调查子问题 。 我们证明这个算法在温和的条件下找到了一个有效的固定点。 方法的效率取决于二元重整所促成的维度减少。 数字实验表明, 我们的方法的计算和统计特性比目前的方法要好。