Scene text recognition (STR) is an important bridge between images and text, attracting abundant research attention. While convolutional neural networks (CNNS) have achieved remarkable progress in this task, most of the existing works need an extra module (context modeling module) to help CNN to capture global dependencies to solve the inductive bias and strengthen the relationship between text features. Recently, the transformer has been proposed as a promising network for global context modeling by self-attention mechanism, but one of the main shortcomings, when applied to recognition, is the efficiency. We propose a 1-D split to address the challenges of complexity and replace the CNN with the transformer encoder to reduce the need for a context modeling module. Furthermore, recent methods use a frozen initial embedding to guide the decoder to decode the features to text, leading to a loss of accuracy. We propose to use a learnable initial embedding learned from the transformer encoder to make it adaptive to different input images. Above all, we introduce a novel architecture for text recognition, named TRansformer-based text recognizer with Initial embedding Guidance (TRIG), composed of three stages (transformation, feature extraction, and prediction). Extensive experiments show that our approach can achieve state-of-the-art on text recognition benchmarks.
翻译:图像和文字识别(STR)是图像和文字之间重要的桥梁,吸引了大量的研究关注。虽然进化神经网络(CNNS)在这一任务中取得了显著的进展,但大多数现有作品都需要一个额外的模块(文字建模模块),以帮助CNN捕捉全球依赖性,以解决感应偏差,并加强文本特征之间的关系。最近,变压器被提议为通过自读机制进行全球背景建模的有希望的网络,但主要缺陷之一是效率。我们建议用1D拆分处理复杂性的挑战,用变压器编码器取代CNN,以减少对上下文建模模块的需要。此外,最近的方法是用冻结的初始嵌入式来引导解码器解码文字特征,导致准确性损失。我们提议使用从变压器编码器中学习的初始嵌入器,使其适应不同的输入图像。最重要的是,我们引入了一种新颖的文本识别结构,名为TRansformed 文本识别器,以初始嵌入式建模制导模(TRIG),以三个阶段的图像识别模型。