In recent years, phase retrieval has received much attention in many fields including statistics, applied mathematics and optical engineering. In this paper, we propose an efficient algorithm, termed Subspace Phase Retrieval (SPR), which can accurately recover a $n$-dimensional $k$-sparse signal given its $\mathcal O(k\log^3 n)$ magnitude-only Gaussian samples. This offers a significant improvement over many existing methods that require $\mathcal O(k^2 \log n)$ or more samples. Also, the proposed sampling complexity is nearly optimal as it is very close to the fundamental limit $\mathcal O(k \log \frac{n}{k})$ for the sparse phase retrieval problem.
翻译:近年来,阶段检索在许多领域,包括统计、应用数学和光学工程,都得到了很大的注意。在本文中,我们提议了一个高效的算法,称为子空间阶段检索(SPR ), 这个算法可以精确地回收一个美元-美元- 美元- 美元- 碎裂信号, 因为它是 $\ mathcal O (k\ log3 n) 的, 仅用星等的高斯样本。 这大大改进了许多现有的方法, 需要 $\ mathcal O (k\ log\ frac{ nk} 或更多样本。 另外, 提议的取样复杂性几乎是最佳的, 因为它非常接近于稀有阶段检索问题的基本限值 $\ mathcal O (k\ log\ frac{nk} 。