This work tackles the fundamental challenges in Federated Learning (FL) posed by arbitrary client participation and data heterogeneity, prevalent characteristics in practical FL settings. It is well-established that popular FedAvg-style algorithms struggle with exact convergence and can suffer from slow convergence rates since a decaying learning rate is required to mitigate these scenarios. To address these issues, we introduce the concept of stochastic matrix and the corresponding time-varying graphs as a novel modeling tool to accurately capture the dynamics of arbitrary client participation and the local update procedure. Leveraging this approach, we offer a fresh decentralized perspective on designing FL algorithms and present FOCUS, Federated Optimization with Exact Convergence via Push-pull Strategy, a provably convergent algorithm designed to effectively overcome the previously mentioned two challenges. More specifically, we provide a rigorous proof demonstrating that FOCUS achieves exact convergence with a linear rate regardless of the arbitrary client participation, establishing it as the first work to demonstrate this significant result.
翻译:暂无翻译