Objective: This paper presents an Alzheimer's disease (AD) detection method based on learning structural similarity between Magnetic Resonance Images (MRIs) and representing this similarity as a graph. Methods: We construct the similarity graph using embedded features of the input image (i.e., Non-Demented (ND), Very Mild Demented (VMD), Mild Demented (MD), and Moderated Demented (MDTD)). We experiment and compare different dimension-reduction and clustering algorithms to construct the best similarity graph to capture the similarity between the same class images using the cosine distance as a similarity measure. We utilize the similarity graph to present (sample) the training data to a convolutional neural network (CNN). We use the similarity graph as a regularizer in the loss function of a CNN model to minimize the distance between the input images and their k-nearest neighbours in the similarity graph while minimizing the categorical cross-entropy loss between the training image predictions and the actual image class labels. Results: We conduct extensive experiments with several pre-trained CNN models and compare the results to other recent methods. Conclusion: Our method achieves superior performance on the testing dataset (accuracy = 0.986, area under receiver operating characteristics curve = 0.998, F1 measure = 0.987). Significance: The classification results show an improvement in the prediction accuracy compared to the other methods. We release all the code used in our experiments to encourage reproducible research in this area


翻译:目标:本文件展示了阿尔茨海默氏病(AD)检测方法,该方法基于对磁共振图像(MRIs)之间的结构相似性进行学习,并以图示来表示相似性。方法:我们用输入图像的内嵌特征(即,非磁性(ND),Virmold Demented(VMD)、Mold Demented(MD)和中度 Demented(MDTD))构建相似性(AD)检测方法。我们实验和比较了不同维度降算法和组合算法,以构建最相似性图,以利用同类距离作为类似度测量,来捕捉同一类图像之间的相似性。我们使用相似性图来显示(缩略图)的培训数据数据数据数据,我们用的是(缩略图)显示(缩略图),我们用的是(我们)98年前的精确度模型进行广泛的实验,我们用的是(我们)的精确性模型,我们用的是(我们)在精确度模型中,我们用的是(我们)最近测量的精确度模型,我们用的是(我们)的精确度模型,我们用的是(我们用的是)的精确度测量模型,我们用的是(我们用的是)测量模型测量模型进行其他的计算,用的是其他的精确度测量数据,我们用的是其他的计算方法来测量结果。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
10+阅读 · 2021年3月30日
已删除
Arxiv
32+阅读 · 2020年3月23日
Arxiv
7+阅读 · 2018年1月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员