We study the algorithmic task of finding a large independent set in a sparse Erd\H{o}s-R\'{e}nyi random graph with $n$ vertices and average degree $d$. The maximum independent set is known to have size $(2 \log d / d)n$ in the double limit $n \to \infty$ followed by $d \to \infty$, but the best known polynomial-time algorithms can only find an independent set of half-optimal size $(\log d / d)n$. We show that the class of low-degree polynomial algorithms can find independent sets of half-optimal size but no larger, improving upon a result of Gamarnik, Jagannath, and the author. This generalizes earlier work by Rahman and Vir\'ag, which proves the analogous result for the weaker class of local algorithms.
翻译:我们的研究算法任务是在稀疏的Erd\H{o}s-R\{e}nyi随机图中找到一个大型独立的数据集,该图带有n$oble vertics和平均度$d$。已知最大独立数集的大小为$(2\log d / d)n$(双倍限为$n\ to\ infty$),然后是$d\to\ to\infty$,但最知名的多元时算法只能找到一套独立的半最佳大小为$(\log d/ d)n$(\ d)n美元。我们显示,低度多元数算法的类别可以找到半最佳度的独立的数据集,但不会更大,因为Gamarnik、Jagannath和作者的结果而有所改进。这概括了Rahman和Vir\'ag早先的工作,这证明了本地算算法较弱的类的类似结果。