Class expression learning is a branch of explainable supervised machine learning of increasing importance. Most existing approaches for class expression learning in description logics are search algorithms or hard-rule-based. In particular, approaches based on refinement operators suffer from scalability issues as they rely on heuristic functions to explore a large search space for each learning problem. We propose a new family of approaches, which we dub synthesis approaches. Instances of this family compute class expressions directly from the examples provided. Consequently, they are not subject to the runtime limitations of search-based approaches nor the lack of flexibility of hard-rule-based approaches. We study three instances of this novel family of approaches that use lightweight neural network architectures to synthesize class expressions from sets of positive examples. The results of their evaluation on four benchmark datasets suggest that they can effectively synthesize high-quality class expressions with respect to the input examples in under a second on average. Moreover, a comparison with the state-of-the-art approaches CELOE and ELTL suggests that we achieve significantly better F-measures on large ontologies. For reproducibility purposes, we provide our implementation as well as pre-trained models in the public GitHub repository at https://github.com/ConceptLengthLearner/NCES


翻译:课堂表达学习是具有日益重要性的、可解释的、受监督的机器学习的分支。在描述逻辑中,大多数现有的课堂表达学习方法是搜索算法或基于硬规则的。特别是,基于精细操作者的方法具有可缩放性的问题,因为他们依赖超自然功能来探索每个学习问题的巨大搜索空间。我们建议了一套新的方法,我们用这些方法来进行合成。这个家庭直接从提供的例子中计算了阶级表达的事例。因此,它们不受基于搜索的方法的运行时间限制,也不受基于硬规则的方法缺乏灵活性的限制。我们研究了三种新型方法的例子,即使用轻量级神经网络结构来综合一系列正面实例中的类表达。对四个基准数据集的评估结果表明,它们可以有效地将高质量的阶级表达与输入实例在第二个平均情况下的典型结合起来。此外,与“CELOE”和“NLTLL”相比,它们表明,我们在大型主题学上取得了显著的F度测量。为可理解性目的,我们把“GIL/CES”作为公共模型的落实前期。我们接受了“GIL/CES”。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
39+阅读 · 2020年2月21日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年7月31日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2020年10月8日
Compression of Deep Learning Models for Text: A Survey
A Compact Embedding for Facial Expression Similarity
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年7月31日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员