Irregularly sampled multivariate time series (ISMTS) are prevalent in reality. Due to their non-uniform intervals between successive observations and varying sampling rates among series, the channel-independent (CI) strategy, which has been demonstrated more desirable for complete multivariate time series forecasting in recent studies, has failed. This failure can be further attributed to the sampling sparsity, which provides insufficient information for effective CI learning, thereby reducing its capacity. When we resort to the channel-dependent (CD) strategy, even higher capacity cannot mitigate the potential loss of diversity in learning similar embedding patterns across different channels. We find that existing work considers CI and CD strategies to be mutually exclusive, primarily because they apply these strategies to the global channel. However, we hold the view that channel strategies do not necessarily have to be used globally. Instead, by appropriately applying them locally and globally, we can create an opportunity to take full advantage of both strategies. This leads us to introduce the Channel Harmony ISMTS Transformer (TimeCHEAT), which utilizes the CD locally and the CI globally. Specifically, we segment the ISMTS into sub-series level patches. Locally, the CD strategy aggregates information within each patch for time embedding learning, maximizing the use of relevant observations while reducing long-range irrelevant interference. Here, we enhance generality by transforming embedding learning into an edge weight prediction task using bipartite graphs, eliminating the need for special prior knowledge. Globally, the CI strategy is applied across patches, allowing the Transformer to learn individualized attention patterns for each channel. Experimental results indicate our proposed TimeCHEAT demonstrates competitive SOTA performance across three mainstream tasks.
翻译:暂无翻译