In this paper, a virus optimization algorithm, which is one of the metaheuristic optimization technique, is employed for the first time to the problem of finding extremal binary self-dual codes. We present a number of generator matrices of the form $[I_{36} \ | \ \tau_3(v)],$ where $I_{36}$ is the $36 \times 36$ identity matrix, $v$ is an element in the group matrix ring $M_3(\mathbb{F}_2)G$ and $G$ is a finite group of order 12, which we then employ together with the the virus optimization algorithm and the genetic algorithm to search for extremal binary self-dual codes of length 72. We obtain that the virus optimization algorithm finds more extremal binary self-dual codes than the genetic algorithm. Moreover, by employing the above mentioned constructions together with the virus optimization algorithm, we are able to obtain 39 Type I and 19 Type II codes of length 72, with parameters in their weight enumerators that were not known in the literature before.
翻译:本文首次采用了一种病毒优化算法,这是美经优化技术之一,它首次用于解决寻找极端二进制自我二进制代码的问题。我们展示了一些以 $[$I ⁇ 36}\\\\\\\tau_3(v)]为表格的生成器矩阵,其中$1\ ⁇ 36}是36美元的身份矩阵, $v$是分组矩阵中的一个元素,即$M_3(\mathbb{F ⁇ 2}G$和$G$是一个限定的顺序组12,我们随后与病毒优化算法和基因算法一起使用该组来搜索长度为72的极端二进制自我代码。我们了解到,病毒优化算法比基因算法找到更多极端二进制自制代码。此外,通过使用上述构造和病毒优化算法,我们可以获得39种I型和19种II型代码,长度72号,其中的重量参数在文献中是未知的。