Instrumental variables (IVs) are often continuous, arising in diverse fields such as economics, epidemiology, and the social sciences. Existing approaches for continuous IVs typically impose strong parametric models or assume homogeneous treatment effects, while fully nonparametric methods may perform poorly in moderate- to high-dimensional covariate settings. We propose a new framework for identifying the average treatment effect with continuous IVs via conditional weighted average derivative effects. Using a conditional Riesz representer, our framework unifies continuous and categorical IVs. In this framework, the average treatment effect is typically overidentified, leading to a semiparametric observed-data model with a nontrivial tangent space. Characterizing this tangent space involves a delicate construction of a second-order parametric submodel, which, to the best of our knowledge, has not been standard practice in this literature. For estimation, building on an influence function in the semiparametric model that is also locally efficient within a submodel, we develop a locally efficient, triply robust, bounded, and easy-to-implement estimator. We apply our methods to an observational clinical study from the Princess Margaret Cancer Centre to examine the so-called obesity paradox in oncology, assessing the causal effect of excess body weight on two-year mortality among patients with non-small cell lung cancer.
翻译:暂无翻译