Boosting methods often achieve excellent classification accuracy, but can experience notable performance degradation in the presence of label noise. Existing robust methods for boosting provide theoretical robustness guarantees for certain types of label noise, and can exhibit only moderate performance degradation. However, previous theoretical results do not account for realistic types of noise and finite training sizes, and existing robust methods can provide unsatisfactory accuracies, even without noise. This paper presents methods for robust minimax boosting (RMBoost) that minimize worst-case error probabilities and are robust to general types of label noise. In addition, we provide finite-sample performance guarantees for RMBoost with respect to the error obtained without noise and with respect to the best possible error (Bayes risk). The experimental results corroborate that RMBoost is not only resilient to label noise but can also provide strong classification accuracy.
翻译:暂无翻译