Using data from cardiovascular surgery patients with long and highly variable post-surgical lengths of stay (LOS), we develop a modeling framework to reduce recovery unit congestion. We estimate the LOS and its probability distribution using machine learning models, schedule procedures on a rolling basis using a variety of optimization models, and estimate performance with simulation. The machine learning models achieved only modest LOS prediction accuracy, despite access to a very rich set of patient characteristics. Compared to the current paper-based system used in the hospital, most optimization models failed to reduce congestion without increasing wait times for surgery. A conservative stochastic optimization with sufficient sampling to capture the long tail of the LOS distribution outperformed the current manual process and other stochastic and robust optimization approaches. These results highlight the perils of using oversimplified distributional models of LOS for scheduling procedures and the importance of using optimization methods well-suited to dealing with long-tailed behavior.
翻译:使用长期和高度可变的外科手术患者住院时间的数据,我们开发了一个模型框架,以减少康复单位的拥堵;我们利用机器学习模型、采用各种优化模型的滚动程序、采用各种优化模型的时间安排程序以及模拟性能来估计长期和外科手术病人的概率分布;机器学习模型尽管可以使用一套非常丰富的患者特征,但仅取得了中等程度的LOS预测准确性;与医院目前使用的基于纸张的系统相比,大多数优化模型未能在不增加手术等候时间的情况下减少拥堵;保守的随机优化,并有足够的取样来捕捉长期的液压分布的长尾部,超过了目前的人工流程和其他随机和稳健的优化方法;这些结果突出表明了在列表程序上使用过度简化的LOS分发模型的危险,以及使用优化方法对于处理长尾行为的重要性。