Emerging smart grid applications analyze large amounts of data collected from millions of meters and systems to facilitate distributed monitoring and real-time control tasks. However, current parallel data processing systems are designed for common applications, unaware of the massive volume of the collected data, causing long data transfer delay during the computation and slow response time of smart grid systems. A promising direction to reduce delay is to jointly schedule computation tasks and data transfers. We identify that the smart grid data analytic jobs require the intermediate data among different computation stages to be transmitted orderly to avoid network congestion. This new feature prevents current scheduling algorithms from being efficient. In this work, an integrated computing and communication task scheduling scheme is proposed. The mathematical formulation of smart grid data analytic jobs scheduling problem is given, which is unsolvable by existing optimization methods due to the strongly coupled constraints. Several techniques are combined to linearize it for adapting the Branch and Cut method. Based on the topological information in the job graph, the Topology Aware Branch and Cut method is further proposed to speed up searching for optimal solutions. Numerical results demonstrate the effectiveness of the proposed method.
翻译:新兴的智能网格应用程序分析从数百万米和系统收集的大量数据,以便利分散监测和实时控制任务。然而,目前的平行数据处理系统是为通用应用程序设计的,没有意识到所收集的数据数量巨大,在计算智能网格系统时造成数据传输拖延时间过长,反应时间缓慢。减少延迟的一个大方向是联合计算任务和数据传输。我们确定智能网格数据分析工作要求不同计算阶段的中间数据有序传输,以避免网络拥堵。这一新特征妨碍当前列表算法的效率。在这项工作中,提出了一个综合计算和通信任务时间安排计划。智能网格数据分析工作时间安排的数学配方被给出了问题,因为现有优化方法的制约极大,这一问题是无法解决的。一些技术被合并成线性,用于调整分支和剪切方法。根据职务图中的表层学信息,进一步建议通俗学分和切方法加速寻找最佳解决方案。数字结果显示拟议方法的有效性。