Deep neural networks are widely known to be vulnerable to adversarial examples, especially showing significantly poor performance on adversarial examples generated under the white-box setting. However, most white-box attack methods rely heavily on the target model and quickly get stuck in local optima, resulting in poor adversarial transferability. The momentum-based methods and their variants are proposed to escape the local optima for better transferability. In this work, we notice that the transferability of adversarial examples generated by the iterative fast gradient sign method (I-FGSM) exhibits a decreasing trend when increasing the number of iterations. Motivated by this finding, we argue that the information of adversarial perturbations near the benign sample, especially the direction, benefits more on the transferability. Thus, we propose a novel strategy, which uses the Scheduled step size and the Dual example (SD), to fully utilize the adversarial information near the benign sample. Our proposed strategy can be easily integrated with existing adversarial attack methods for better adversarial transferability. Empirical evaluations on the standard ImageNet dataset demonstrate that our proposed method can significantly enhance the transferability of existing adversarial attacks.


翻译:众所周知,深神经网络容易受到对抗性实例的影响,特别是显示在白箱设置下产生的对抗性实例表现明显不佳;然而,大多数白箱攻击方法严重依赖目标模型,很快被困在本地的奥地马,导致对抗性可转移性较差;提议采用以动力为基础的方法及其变体,以逃避当地的选择,更好地转移。在这项工作中,我们注意到,迭代快速梯度标志方法(I-FGSM)产生的对抗性实例的可转移性在增加迭代次数时呈下降趋势。受这一发现驱使,我们争辩说,在良样附近出现的对抗性扰动信息,特别是方向,对可转移性更有利。因此,我们提出一个新的战略,即利用预定步骤大小和双重例子(SD),充分利用靠近良性样本的对抗性攻击信息。我们提出的战略可以很容易地与现有的对抗性攻击方法结合起来,以更好地转移对抗性攻击。对标准图像网络数据集的精细评价表明,我们提出的方法可以大大加强现有对抗性攻击的可转移性。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
45+阅读 · 2020年10月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员