We consider various filtered time discretizations of the periodic Korteweg--de Vries equation: a filtered exponential integrator, a filtered Lie splitting scheme as well as a filtered resonance based discretisation and establish convergence error estimates at low regularity. Our analysis is based on discrete Bourgain spaces and allows to prove convergence in $L^2$ for rough data $u_{0} \in H^s,$ $s>0$ with an explicit convergence rate.


翻译:我们考虑了定期 Korteweg-de Vries 等式的各种过滤时间分解: 过滤的指数集成器、 过滤的谎言分解器以及基于过滤的共振分解法, 以及基于过滤的共振分解法, 并确定低常规度的趋同误差估计。 我们的分析基于离散的 Bourgain 空间, 并能够证明粗略数据 $u ⁇ 0}\ in H ⁇ s, $>0 美元, 并具有明确的趋同率 。

0
下载
关闭预览

相关内容

不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
63+阅读 · 2020年12月11日
专知会员服务
52+阅读 · 2020年9月7日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
神器Cobalt Strike3.13破解版
黑白之道
12+阅读 · 2019年3月1日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
VIP会员
相关资讯
神器Cobalt Strike3.13破解版
黑白之道
12+阅读 · 2019年3月1日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员