In this paper, we present an energy-preserving exponentially integrable numerical method for stochastic wave equation with cubic nonlinearity and additive noise. We first apply the spectral Galerkin method to discretizing the original equation and show that this spatial discretization possesses an energy evolution law and certain exponential integrability property. Then the exponential integrability property of the exact solution is deduced by proving the strong convergence of the semi-discretization. To propose a full discrete numerical method which could inherit both the energy evolution law and the exponential integrability, we use the splitting technique and averaged vector field method in the temporal direction. Combining these structure-preserving properties with regularity estimates of the exact and the numerical solutions, we obtain the strong convergence rate of the numerical method. Numerical experiments coincide with these theoretical results.
翻译:在本文中,我们展示了一种能节能指数化的随机波方程式数字方法,配有立方体无线性和添加性噪音。我们首先应用光谱加列金法将原始方程式分离开来,并表明这种空间离散具有能源演变法和某些指数化可融合特性。然后通过证明半分化的高度趋同性来推断出精确溶解的指数性融合特性。为了提议一种完全的离散数字方法,既继承能源演变法,又继承指数化异性,我们在时间方向上使用分解技术和平均矢量场方法。将这些结构保留特性与精确和数字解决办法的定期估计结合起来,我们获得了数字方法的强烈趋同率。数字实验与这些理论结果相吻合。