Model uncertainty quantification is an essential component of effective data assimilation. Model errors associated with sub-grid scale processes are often represented through stochastic parameterizations of the unresolved process. Many existing Stochastic Parameterization schemes are only applicable when knowledge of the true sub-grid scale process or full observations of the coarse scale process are available, which is typically not the case in real applications. We present a methodology for estimating the statistics of sub-grid scale processes for the more realistic case that only partial observations of the coarse scale process are available. Model error realizations are estimated over a training period by minimizing their conditional sum of squared deviations given some informative covariates (e.g. state of the system), constrained by available observations and assuming that the observation errors are smaller than the model errors. From these realizations a conditional probability distribution of additive model errors given these covariates is obtained, allowing for complex non-Gaussian error structures. Random draws from this density are then used in actual ensemble data assimilation experiments. We demonstrate the efficacy of the approach through numerical experiments with the multi-scale Lorenz 96 system using both small and large time scale separations between slow (coarse scale) and fast (fine scale) variables. The resulting error estimates and forecasts obtained with this new method are superior to those from two existing methods.


翻译:模型不确定性量化是有效数据同化的一个必要组成部分。 与亚电网规模进程有关的模型错误往往通过未解决过程的随机参数化来表示。 许多现有的斯托切斯特参数化办法只有在了解真正的亚电网规模进程或完全观察粗化比例化进程时才能适用,在实际应用中情况通常不是这样。 我们提出了一个方法来估计亚电网规模进程的统计数字,以比较现实的情况为例,即只提供对粗糙比例化进程的部分观测。 模型错误的实现是在培训期间估计的,方法是根据一些信息化的共变数(例如系统状况),尽量减少其有条件的平方差总和,受到现有观察的制约,并假设观察错误小于模型错误。 从这些变数中,获得了一个附加模型错误的有条件概率分布,允许复杂的非加星网规模错误结构。 从这一密度中随机抽取的数据在实际的混合数据同化实验中被使用。 我们用多种规模的Lorenz 96系统(例如系统的状况)的数值试验来显示方法的功效。 我们用现有的观察结果是:从小和大比例的快速的预测方法,从这些现有方法之间的慢变为快速和新的推算。

0
下载
关闭预览

相关内容

专知会员服务
105+阅读 · 2021年4月7日
专知会员服务
25+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
专知会员服务
59+阅读 · 2020年3月19日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
神经网络训练tricks
极市平台
6+阅读 · 2019年4月15日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年6月4日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
神经网络训练tricks
极市平台
6+阅读 · 2019年4月15日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员